skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khurgin, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This review highlights recent advancements in the zinc oxide electron transport layer for PbS colloidal quantum dot solar cells. 
    more » « less
  2. Colloidal quantum dots (CQDs) are promising materials for photovoltaic applications due to their solution processibility and size-dependent band gap tunability. The electron transport layer (ETL) is an important component of PbS CQD solar cells, and the quality of the zinc oxide nanoparticle (ZnO NP) ETL film significantly impacts both the power conversion efficiency (PCE) and fabrication yield of CQD solar cells. We report on multiple methods to improve the quality of ZnO NP ETL films and demonstrate increased PCE and device yield in standard CQD solar cells employing optimized ZnO NP films. We also discuss the application of these methods in an inverted CQD solar cell architecture. 
    more » « less